Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.
نویسندگان
چکیده
BACKGROUND In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. METHODS We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. RESULTS Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. CONCLUSIONS Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).
منابع مشابه
Clonal hematopoiesis in acquired aplastic anemia.
Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of ...
متن کاملClonal hematopoiesis in patients with acquired aplastic anemia.
To determine whether patients with acquired asplastic anemia (AA) exhibit clonal hematopoiesis, we used restriction fragment length polymorphisms of the X-linked genes phosphoglycerate kinase (PGK1) and hypoxanthine phosphoribosyltransferase (HPRT) and the X-linked probe M27 beta. Of the 19 female patients studied, 18 (95%) patients were informative for at least one marker. Of these, eight pati...
متن کاملThe molecular basis for paroxysmal nocturnal hemoglobinuria.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disease characterized by chronic intravascular hemolysis, cytopenia due to bone marrow failure and increased tendency to thrombosis. All patients with PNH studied so far have a somatic mutation in an X-linked gene, called PIG-A (phosphatidyl inositol glycan complementation group A), which encodes for a protein involved in the biosy...
متن کاملMutations of ASXL1 and TET2 in aplastic anemia.
Acquired aplastic anemia (AA), characterized by pancytopenia in peripheral blood (PB) and bone marrow (BM) hypoplasia, is a bone marrow failure syndrome. The late evolution to myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML) is the most common clonal complication in refractory patients and in those who do not achieve a robust response. The reported rates of clonal evolution varied i...
متن کاملResponse of Paroxysmal Nocturnal Hemoglobinuria Clone with Aplastic Anemia to Rituximab
Paroxysmal nocturnal hemoglobinuria is caused by expansion of a hematopoietic stem cell clone with an acquired somatic mutation in the PIG-A gene. This mutation aborts the synthesis and expression of the glycosylphosphatidylinositol anchor proteins CD55 and CD59 on the surface of blood cells, thereby making them more susceptible to complement-mediated damage. A spectrum of disorders occurs in P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New England journal of medicine
دوره 373 1 شماره
صفحات -
تاریخ انتشار 2015